NO_x emissions for European gas turbine line and storage compressors

Per Kristensen, DGC

(pgk@dgc.dk)
Contents of the presentation

- Characterize the machinery
- Investigate how the machines are operated
- Analyze NO$_x$ emissions
- Conclusions and recommendations
The survey – A large amount of data has been collected

- Participation from 11 countries
- A total of 515 turbines in survey
- Total capacity is 18,800 MW
- Operational data from 2008 and 2009
- Average 2008/2009 data:
 69,632 TJ of natural gas, 8837 tons of NOₓ annually
- Quality assurance of data by comparison for identified outliers in dialogue with data providers
Characterization of machinery

RESULTS
Age distribution for capacity

Year

Capacity of installed MW
0 100 200 300 400 500 600 700
93 % of capacity is for transport

Total capacity in MW:

- Line: 17,649
- Storage: 1,157

Turbine
Average size of gas turbines by year of installation

![Graph showing the average size of gas turbines by year of installation. The x-axis represents the year of installation, ranging from 1965 to 2011. The y-axis represents the capacity of installed MW, ranging from 0 to 1400. The graph shows variations in the capacity of installed MW across different years.](image-url)
Size distribution for line and storage turbines
Normal burners on older turbines, low-NO$_x$ on young turbines (some retrofitted)
Characterization of operations

RESULTS
Natural gas consumption varies year/year
Low-NO\textsubscript{x} burners dominate operation 58/42

![Bar chart showing the consumption of natural gas for low NOx burners and normal NOx burners from 2008 to 2009. The chart indicates a significant difference in consumption between the two types of burners.](image-url)
Annual load factor is very low for most turbines
Typical average annual load when rolling is 50-90 % of full load
A large part of the capacity is operated a few hours
Investigation of NO$_x$ emissions

RESULTS
NO$_x$ emission factor has a clear downward trend for turbines

Year installed

EMF NO$_x$ in g/J

Turbines 2008
Turbines 2009
Low-\(\text{NO}_x\) burners do have lower \(\text{NO}_x\) emissions

![Bar chart showing comparison of Total activity EMF NOx g/GJ for Turbines between 2008 and 2009. The chart indicates lower emissions for Low NOx burners compared to Normal NOx burners.]
Comparison by country

Graph showing the emission factor in g NOx/GJ for different countries over two years: Turbines 2008 and Turbines 2009.
Emission factor development

- Target average low NOx burner
- Target Danish CHP turbines
Conclusions I

- A large amount of data on line and storage gas turbine compressors has been collected.

- Annual operational load factor is very low and when rolling, turbines have an average of 50-90% load.

- Large year over year changes in operation due to weather and changes in trade pattern.

- Many turbines in operation were installed in the 1970s and 1980s.
Conclusions II

- Low-NO\textsubscript{x} burners provide lower NO\textsubscript{x} by approximately a factor of two

- Emission factor for NO\textsubscript{x} is steadily decreasing as gas companies choose low-NO\textsubscript{x} technology when they install a new turbine

- Regulators must acknowledge that specific cost for NO\textsubscript{x} reduction could be very high due to high investment costs and a low number of operation hours on many turbines
Acknowledgment

The author wishes to acknowledge the work performed by the colleagues in the Marcogaz working group Air Emissions. Without their help in providing the data and fruitful discussions this work would not have been possible.